Seminar : Recent Developments in Computational Semantics

Introduction

Manfred Pinkal Summer 2012

Organizational Matters (1)

□ Organization of the Seminar

- Presentation
- Seminar Paper
- □Oral Exam
- **Active Participation**
- Deadlines
 - Registration: 01.07.
 - Seminar paper draft: 01.09.
 - □Seminar paper final: 01.10.

Grading

Organizational Matters (2)

Background Reading

Basic Problems in Computational Semantics

Lexical SemanticsHow do we model word meaning?

Sentence Semantics
How do we model sentence meaning?

Semantic Composition/ Construction
How do we compute sentence meaning from word meaning?

Disambiguation, Ambiguity Resolution
How do we compute the utterance meaning from linguistic content and context information?

□ Inference Modeling

Logic-Based Semantics

Lexical SemanticsHow do we model word meaning?

Sentence Semantics
How do we model sentence meaning?

Semantic Composition/ Construction
How do we compute sentence meaning from word meaning?

Disambiguation, Ambiguity Resolution

How do we compute the utterance meaning from linguistic content and context information?

□ Inference Modeling

Computing Truth Values (1)

 $\llbracket work(bill) \rrbracket^{M,g} = 1 \quad \text{iff} \quad V_M(bill) \in V_M(work)$

Let M=M1: V_{M1} (bill) $\in V_{M1}$ (work), so [[work(bill)]]^{M1,g} = 1 Let M=M2:

 V_{M2} (bill) ∉ V_{M2} (work), so [[work(bill)]]^{M2,g} = 0

Logic-Based Semantics

Lexical SemanticsHow do we model word meaning?

Sentence Semantics
How do we model sentence meaning?

Semantic Composition/ Construction
How do we compute sentence meaning from word meaning?

Disambiguation, Ambiguity Resolution
How do we compute the utterance meaning from linguistic content and context information?

□ Inference Modeling

Semantic Composition

Logic-Based Semantics

Lexical SemanticsHow do we model word meaning?

Sentence Semantics
How do we model sentence meaning?

Semantic Composition/ Construction
How do we compute sentence meaning from word meaning?

Disambiguation, Ambiguity Resolution
How do we compute the utterance meaning from linguistic content and context information?

□ Inference Modeling

Data-Intensive Semantics

Lexical SemanticsHow do we model word meaning?

Sentence Semantics
How do we model sentence meaning?

Semantic Composition/ Construction
How do we compute sentence meaning from word meaning?

Disambiguation, Ambiguity Resolution
How do we compute the utterance meaning from linguistic content and context information?

□ Inference Modeling

Ambiguity Resolution

Yesterday night we went to a restaurant;I ordered an expensive dish.

Ambiguity Resolution

Yesterday night we went to a restaurant;I ordered an expensive dish.

The box was in the penThe pen was in the box

Data-Intensive Semantics

Lexical SemanticsHow do we model word meaning?

Sentence Semantics
How do we model sentence meaning?

Semantic Composition/ Construction
How do we compute sentence meaning from word meaning?

Disambiguation, Ambiguity Resolution
How do we compute the utterance meaning from linguistic content and context information?

□ Inference Modeling

Data-Intensive Semantics

Lexical SemanticsHow do we model word meaning?

Sentence Semantics
How do we model sentence meaning?

Semantic Composition/ Construction
How do we compute sentence meaning from word meaning?

Disambiguation, Ambiguity Resolution
How do we compute the utterance meaning from linguistic content and context information?

Inference Modeling

Acquisition of Inference Patterns from Corpora

Table 3. The top-20 most similar paths to "X solves Y".

Y is solved by X	Y is resolved in X
X resolves Y	Y is solved through X
X finds a solution to Y	X rectifies Y
X tries to solve Y	X copes with Y
X deals with Y	X overcomes Y
Y is resolved by X	X eases Y
X addresses Y	X tackles Y
X seeks a solution to Y	X alleviates Y
X do something about Y	X corrects Y
X solution to Y	X is a solution to Y

Data-Intensive Semantics

Lexical SemanticsHow do we model word meaning?

Sentence Semantics
How do we model sentence meaning?

Semantic Composition/ Construction
How do we compute sentence meaning from word meaning?

Disambiguation, Ambiguity Resolution
How do we compute the utterance meaning from linguistic content and context information?

□ Inference Modeling

Major Seminar Topics

- □ Similarity Modeling in distributional semantics
- □ Word-sense disambiguation and discrimination
- Semantic role labeling
- Acquisition of paraphrases, inference patterns and script information
- □ Approaches using latent variables
- □ Processing of temporal information in texts
- Grounding of distributional meaning in the (visual) world

Major Seminar Topics

- Similarity Modeling in distributional semantics
- □ Word-sense disambiguation and discrimination
- Semantic role labeling
- Acquisition of paraphrases, inference patterns and script information
- □ Approaches using latent variables
- □ Processing of temporal information in texts
- Grounding of distributional meaning in the (visual) world

Distributional Similarity

$$sim(a,b) = \cos(\vec{a},\vec{b})$$

	factory	flower	tree	water	fork
grow	15	147	330	106	3
garden	5	200	198	118	17
worker	279	0	5	18	0
production	102	6	9	28	0
wild	3	216	35	30	0

Distributional Similarity: Challenges

Contextual variation of meaning

Kontextualisierung

	plant	factory	flower	tree	water	fork
<u></u>						
grow	517	15	147	330	106	3
garden	316	5	200	198	118	17
worker	84	279	0	5	18	0
production	130	102	6	9	28	0
wild	96	3	216	35	30	0

$$\vec{v}_{water}(plant) = \sum_{w} f(plant, w) * f(water, w) * \vec{e}_{w}$$

Kontextualisierung

Distributional Similarity: Challenges

Contextual variation of meaning

□ What is similarity?

□car – automobile

□car – motor vehicle

 \Box car – drive

 \Box car – gas – highway

Semantic Similarity: Integrating Syntactic Information

	plant	factory	flower	water	fork
(grow, -SUBJ)	114	1	17	4	0
(close, -OBJ)	36	30	1	2	0
(car, MOD)	71	38	0	0	0
(fresh, MOD)	5	0	65	224	0
(deep, MOD)	1	0	9	166	4
(company, -MOD)	3	1	0	216	0
(worker, -MOD)	2	128	0	6	0
(wild, MOD)	45	0	167	11	0
(like, -OBJ)	42	13	107	128	8
(water, -OBJ)	23	0	5	0	0

Distributional Similarity: Challenges

Contextual variation of meaning

- □What is similarity?
- Distributional Semantics and Compositionality?

Distributional Similarity: Challenges

Contextual variation of meaning
What is similarity?
Distributional Semantics and Compositionality?
Distributional Semantics and Truth?
Cloudy – Sunny – Overcast

Linking Documents to World States

Linking Documents to World States

Linking Documents to World States

Distributional Similarity: Challenges

- Contextual variation of meaning
- □ What is similarity?
- Distributional semantics and compositionality?
- Distributional semantics and truth?
- □ Are co-occurrence frequencies meanings?

Distributional Similarity: Challenges

Contextual variation of meaning
What is similarity?
Distributional semantics and compositionality?
Distributional semantics and truth?
Are co-occurrence frequencies meanings?

Background Reading Distributional Semantics: P. D. Turney and P. Pantel (2010) "From Frequency to Meaning: Vector Space Models of Semantics", JAIR

Major Seminar Topics

- □ Similarity Modeling in distributional semantics
- □ Word-sense disambiguation and discrimination
- Semantic role labeling
- Acquisition of paraphrases, inference patterns and script information
- □ Approaches using latent variables
- □ Processing of temporal information in texts
- Grounding of distributional meaning in the (visual) world

Topics

Distributional Semantics and Contextualization

Mitchell&Lapata 2008, Erk&Pado 2008 (Thater et al. 2010)

Acquisition of Paraphrases and Inference Patterns

Lin&Pantel 2001, (Szpektor et al. 2004),Some of: Bhagat et al. 2007, Pantel et al. 2007,Geffet&Dagan 2005

